Innovative Methodology Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution
نویسندگان
چکیده
Miri A, Daie K, Burdine RD, Aksay E, Tank DW. Regressionbased identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J Neurophysiol 105: 964–980, 2011. First published November 17, 2010; doi:10.1152/jn.00702.2010. The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regressionbased approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals.
منابع مشابه
Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution
The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating pr...
متن کاملOptical Methods for Simultaneous Imaging and Stimulation of Neural Activity at Cellular Resolution in Awake, Behaving Mice
A central goal in neuroscience is to understand dynamics in the awake mammalian brain on a large scale that is also well-resolved (thousands of individual neurons). Recent optical methods for cellular-resolution fluorescence imaging using two-photon excitation (TPE) microscopy, or population-resolution optogenetic perturbation of activity, have been applied to measure or probe dynamics of neuro...
متن کاملTranscranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model
Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvas...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملDeep brain fluorescence imaging with minimally invasive ultra-thin optical fibers
A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from welldefined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive (surface) multiphoton approaches1,2 for deep (>2mm) structures, while Gradient Refreactive Index (GRIN) endoscopes2–4 are thick and ...
متن کامل